0% Complete
صفحه اصلی
/
نهمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Fault diagnosis of photovoltaic modules using deep neural networks-VGG16
نویسندگان :
Samaneh Azimi
1
Mohammad Manthouri
2
1- دانشگاه شاهد تهران
2- دانشگاه شاهد تهران
کلمات کلیدی :
Convolutional neural network Photovoltaic array،Fault classification،Maximum power point tracking،Scalograms
چکیده :
Fault detection in photovoltaic (PV) arrays is essential to increase the output power and lifetime of a PV system. Conditions such as partial shading, high impedance faults and the presence of Maximum Power Point Tracking (MPPT) make fault detection difficult under environmental conditions. Most research in this area has only identified and classified faults in a few scenarios. This study identifies and classifies faults in the PV system using two-dimensional Deep Convolutional Neural Networks (2-D CNN) and features extracted from two-dimensional scalograms generated from PV system data. Unlike previous methods proposed in the literature for fault diagnosis and classification, our study considered different fault cases with the combination of MPPT. This study shows that the proposed method, including a pre-trained CNN, performs better than existing methods and achieves 98.76 fault detection accuracy
لیست مقالات
لیست مقالات بایگانی شده
Designing an Adaptive-Intelligent Controller for Quadcopter Based on Brain Emotional Learning
Kosar Safari - Amirsaeid Safari - Muhammad Mnathouri
Investigation in Avoiding Ferroresonance in PT Circuits using Shunt Capacitor
Hossein Tahami fard - Saeed Seyedtabaii
Robust Fuzzy Observer-Based Speed Control of Electric Vehicle with Unmeasurable Premise Variables
Zeinab Echreshavi - Mokhtar Shasadeghi - Mohammad Hassan Asemani
بکارگیری تکنیک کنترل بهینه جهت طراحی مسیر حرکت بر خط برای هدایت خودرو خودران الکتریکی
محمد امین قماشی - رضا کاظمی
Virtual Synchronous Generator Controller for Power Quality Enhancement in Microgrids
Delnia Hosseini - Mobin Naderi - Qobad Shafiee - Mehdi Savaghebi - Hassan Bevrani
Enhancing Cyber Attack Detection in CPS Using a Semi-Supervised Approach to Determine Parameters for DBSCAN Algorithm
Hamid Navazani - Abolghasem Daeichian - AmirHossein Abolmasoumi
Forecasting the Condition Severity of COVID-19 in Terms of Prevalence in Iran
Morteza Hajji - Ahmad Ali Rafiee - Ali Akbar Safavi - Mahmoud Farhang
Enhancing Fault Detection in Induction Motors using LSTM-Attention Neural Networks
Mohammad Ali Labbaf Khaniki - Marzieh Mirzaeibonehkhater - Mohammad Manthouri
Machine Learning-Based Prediction of Coronary Heart Disease
Badrosadat Nategholeslam Shirazi - Shiva Naghsh - Ali Akbar Safavi - Amir Sharafkhaneh
Comparative Analysis of Data-Driven Predictive Control Strategies
Ali Rezaei - Ali Khaki-Sedigh
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.2