0% Complete
صفحه اصلی
/
هشتمین کنفرانس بین المللی کنترل ، ابزار دقیق و اتوماسیون
Using Deep Learning Network for Fault Detection in UAV
نویسندگان :
Armin Mahdi Erfanian
1
Amin Ramezani
2
1- دانشگاه تربیت مدرس
2- دانشگاه تربیت مدرس
کلمات کلیدی :
UAV, Quadrotor, Fault detection, BLSTM, Deep learning.
چکیده :
Unmanned aerial vehicles (UAV), especially quadrotors, have received much attention in recent years. The most important challenge in a drone system is fault detection. therefore, in this article, we used the Long short-term memory algorithm (LSTM) to detect faults. in other words we were able to detect the actuator fault of quadrotor using LSTM algorithm, used in the field of deep learning. In this research, we first simulated the quadrotor model using PID controller and then extracted the data and through this we were able to train the network and eventually detect the fault by collecting data from various state variables and inputs at different frequencies and amplitudes. The simulation results show this method can be effective in detecting faults in quadrotor and its accuracy reaches 99%.
لیست مقالات
لیست مقالات بایگانی شده
Estimation of time-varying and state-dependent fault using adaptive observer for a class of discrete- time systems
Sima Taghizadeh - Reza Mahboobi Esfanjani
Self-powered WiFi-connected monitoring stations for environmental pollution app-based control in urban and industrial areas
Paolo Visconti - Roberto De Fazio - Ramiro Velazquez - Bassam Al-Naami - Amir Aminzadeh Ghavifekr
Adaptive Fractional Sliding Mode Controller for Controlling Airway pressure in an Artificial Ventilation System
Amir Veisi - Hamoun Maleki - Hadi Delavari
Time-Delay Learning-Based Controller for Fully-Constrained Cable-Driven Parallel Robots
Mohammad Bajelani - S. Ahmad Khalilpour - M. Isaac Hosseini - S. Ali A. Moosavian - Hamid D. Taghirad
طراحی کنترل کننده بهینه مقاوم و مرتبه کسری برای یک سیستم آشوب فوق سریع
شبنم فرشید - الهام امینیبروجنی
On The Dynamic Calibration and Trajectory Control of ARASH:ASiST
Ali Hassani - M.R. Dindarloo - R. Khorrambakht - A. Bataleblu - R. Heidari - M. Motaharifar - S. F. Mohammadi - H. D. Taghirad
Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly Detection
Seyed Amirhossein Najafi - Mohammad Hassan Asemani - Peyman Setoodeh
Condition Monitoring of Hydraulic Systems Based on Machine Learning And Fusion Methods
Mohammad Jafari Vayeghan - Behzad Moshiri
Model Predictive Control of Three-Phase Four-Leg MMC-Based STATCOM Under Nonlinear Load Phase Switching Conditions
Milad Samady Shadlu
A new robust control for mobile robots with differential wheels:output- and state- dependent Riccati equation approach
Neda Nasiri - Ahmad Fakharian - Mohammad Bagher Menhaj
ثمین همایش، سامانه مدیریت کنفرانس ها و جشنواره ها - نگارش 40.3.2